
Background  Notes  I :   
Analysis  of Experimental  Data 

Introduction                                     

Scientists work according to what is known as the “scientific method”. This consists of
four steps: 

(a) First we observe an interesting or unusual phenomenon; 
(b) A possible explanation (a hypothesis) to explain the observation is devised; 
(c) Experiments are (i) designed, and (ii) performed to test the hypothesis; and 
(d) The results of the experiment are checked to determine whether they lend

support to the hypothesis. 

In the sort of work which you will do as part of your degree course, most experimental
work in physical chemistry relates to step (c ii) and to (d). Normally both the topic to be
studied (for example, the enthalpy of combustion of some organic chemical) and the
relevant background theory (in this case, classical thermodynamics) are well known. You
make the relevant physical measurements, and check that the results are in accord with
theory. 

Design of hypotheses (step b), and of experiments (c i) is an important aspect of Part
II research, and you may encounter examples of it later in the PTCL practical course.

If an experiment is to be effective, it must be able to discriminate between the
predictions of competing theories.  This is less simple than it may sound since it
requires that you be able to estimate the “quality” of your results. A simple example will
help to explain this point. 

Suppose you were trying to identify a gas. It's at low pressure, so might be a gas or a liquid at
room temperature. Since you have a mass spectrometer you decide to use it to determine the
molecular mass of the gas.  The result is 43.9 Daltons. Is this sufficient to identify the gas? 
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The answer is ..... probably. But first you need to know how accurate the measurement
is. 

In almost every measurement there is some uncertainty. If you measure the height of a
friend, you might perhaps quote the result to ± 1 cm, or even (if you were unreasonably
optimistic!) to ± 0.1 cm. The “±” bit is the “error” in your measurement. It is important
to realise that in this context, error means “uncertainty” - the term does not imply that
you have made a mistake in measurement (though of course that might have happened),
merely that you cannot specify the result of the measurement absolutely precisely.

The size of the experimental error dictates how you can interpret the results from
your experiment. Suppose you estimate that the mass spectrometry measurement had
an error of ± 1.5. Your result must now be shown as 43.9 ± 1.5 Daltons, so the gas you
are trying to identify could be any compound whose molecular mass lies between 42.4
and 45.4. 

Several compounds are now possible, including carbon dioxide (molecular weight of
44.01), propane (44.07), ethyl alcohol (45.06) or ethylamine (45.09) If the uncertainty
was a bit larger, other possibilities, such as argon, would also exist. By contrast, if the
error were just ± 0.15, all but carbon dioxide would be ruled out. You can see,
therefore, that merely quoting the result of an experiment is not sufficient - you must
always include the probable uncertainty. In fact, the results you calculate at the end of
an experiment are virtually useless without an estimate of their quality. 

Estimation of the reliability of your data is a vital task in science, and these notes,
together with experiments X2 and X3, are concerned largely with the task of handling
experimental error. In a sense, measurements are the "products" of physical chemistry
in the same way that samples are the products of an organic laboratory exercise. Just
as you might use NMR or IR spectroscopy to determine the purity of a compound you
had prepared in an organic lab, so you must assess the quality of the data you extract
from a physical experiment through an analysis of error.

You must therefore learn how to determine the magnitude of the error associated with
your data. Demonstrators will expect you to apply the methods of analysis discussed in
these notes to every experiment you carry out in the PTCL. 

1   Accuracy and precision

We’ll start with two terms which are frequently confused: accuracy and precision.

The accuracy of a result indicates how close it is to the theoretical value. 

The precision is a measure of how similar are repeated measurements of the same
property.
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Thus an accurate measurement agrees well
with the actual ("true") value, while a
precise measurement is reproducible from
one measurement to the next. Precise
measurements are not necessarily
accurate, therefore, although accurate
ones are necessarily precise.

The figure to the left shows the results
when three people fired at a target. A’s
shots are neither accurate nor precise,

while those of B are precise but not very accurate. C’s shots are both precise and
accurate.

2   Random and systematic errors

Experimental errors are unavoidable. They can be divided into two categories.

Systematic errors might be due to faulty calibration, limitations in the theory
underlying an experiment, sample contamination or instrument drift; they give rise to a
uniform and reproducible error in every reading of the same type.

Random errors are due to inaccuracies in the process of measurement, and are
unpredictable. Random errors prevent
measurements from being identical and
arise from random fluctuations in factors
such as temperature or electrical noise,
or simply from the inability of the
experimenter to read a measuring
instrument in precisely the same way each
time. 

In the figure on the right a number of
measurements have been made and
plotted as a histogram. The average value
of the measurements is close to 15. If 15
is the “correct” value, then the
measurements show a roughly random (Gaussian) scatter around the mean. If, on the
other hand, the correct value is 23, then the measurements show not just a random
scatter, but evidently the whole set of measurements is shifted, and this suggests some
kind of systematic error in the data.
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In these notes we will present a little of the mathematics of random errors, and,
through exercises, show the practical implications of the presence of error in data. 

You might think that systematic errors would be easy to spot, but often they are
harder to detect than random errors (essentially because we may not know what the
“right” answer is, so it is hard to tell whether the final result is close to it or not). A
characteristic indication of their presence is if significantly different results are
obtained when the same physical quantity is measured using two different methods. A
famous example is the discrepancy in values of the charge on the electron between
Millikan's oil drop experiment and the ratio of the Faraday to Avogadro's constant,
which was ultimately traced to an incorrect value of the viscosity of air from which the
radius of the drop was deduced.

3  Two comments on systematic error

(a) The origin of the error has no bearing on the precision of the result. If the weight
of a sample is 25.0049 ± 0.0004 g, the precision is not a function of the type of error.

(b) Random errors are unavoidable and will arise in any experiment. However, they can
be handled using statistics and their effect may be diminished by repeating the
experiment many times. Systematic errors, on the other hand, cannot always be allowed
for. This is because 

although we may know of (or guess) the existence of a systematic error, we may be
unable to determine its size; or

we may not even know that a systematic error is affecting our measurements.

It is important to realise that systematic errors are not occasional irritations, but a
complication present in almost every experiment. If you perform a titration, the
calibration of the burette will be correct only to within certain limits; thus all your
titration volumes are probably too small or too large. Mechanical balances may
deteriorate with use - they can be read to the same precision as when they were new,
yet every reading may be faulty by the same amount. 

In many experiments the theory on which the experiment is based will contain
approximations (for example, you may assume ideal gas behaviour, which may be
appropriate under the conditions of the experiment for hydrogen, but not for carbon
dioxide). Every result may be slightly wrong as a result. Furthermore, the extent of the
error may depend upon experimental conditions. For example, deviations from ideal gas
behaviour generally become more pronounced as the pressure increases.

It is often difficult to identify systematic errors and to estimate their magnitude. This
is no way means that they can be ignored. Indeed, systematic errors are a more serious
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obstacle to the collection of reliable data than are random errors, since the latter can
be allowed for mathematically.

4   How to analyse random error

Repeated measurements of the same quantity usually contain random error. If the error
is random, its size is determined by 'chance' and readings will cluster about the mean
value, showing a 'normal' or Gaussian distribution. Random errors are completely
unpredictable - and unavoidable. They cannot be eliminated by repeating the experiment
very carefully, but their effect may be reduced by performing the experiment many
times and treating the results statistically. If sufficient readings are available, (usually
six is a realistic minimum), we can analyse those readings to determine the average
(mean) of the readings, and the chance that the true value of the reading lies within a
certain tolerance of that mean. 

This analysis is straightforward and should always be carried out when random error
has produced significant scatter in your experimental results. It is generally very easy
to do using a standard calculator.

The treatment of random errors starts from the assumption that the true value, or
mean, m, of any quantity x can be measured only within a tolerance or standard
deviation, s, such that the probability P(x)dx of obtaining a value between x and x + dx
follows the normal distribution.

The function P(x) takes the mathematical form:

           (1)P(x) = (2 2)
1
2 exp[−(x − )2/2 2]

which has the property that 67% of an infinite sample of readings of x lie within the
range µ ± σ, 95% lie within µ ± 2σ, and 99% within 3σ of the mean. 

Section 5 below explains how to find the mean and standard deviation of a set of
measurements, and section 6 deals with comparisons between different experiments.
The fitting of straight line graphs is covered in section 7. Finally section 8 shows how
errors in measured quantities, x and y for example, combine to yield the error in some
function z=f(x,y) of physical interest ("Propagation of errors").

5 Estimates of the mean and standard deviation

It is a simple matter to calculate the mean and standard deviation from a set of
measurements. Given a set of independent readings x1, x2, ... xn, the mean and standard
deviation are given respectively by:
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           (2)x = 1
n (x1 + x2 + ... + xn) = 1

n i=1
n xi

   (3)2 = 1
n−1 i=1

n (xi − x)2

The factor (n-1)-1 in equation 3 arises because only (n-1) of the {xi} are independent once
their average is specified.  The estimated standard deviation, σ relates to a single
measurement of x. Results should be reported as 

           (4)x = x ! / n

Example: Suppose you measured the frequency of vibration of the C-O bond in carbon monoxide
several times and found the values 2140, 2145, 2139, 2150, 2146, 2142, 2144 cm-1, you would
report the final mean value for the frequency as 2143.7 ± 1.4 cm-1, since the standard deviation,
σ, equals 3.8. (The odd looking units, cm-1, are called “wavenumbers”, and are a unit of energy
which you will encounter in 2nd year). 

 
6   Comparison of results from different experiments

Often measurements are made of a property for which reliable values have already been
determined. It is then important to know how to compare your own results with those
from other workers. The simplest situation is when you wish to compare your mean
reading with a literature value, or theoretical prediction, µ, when you have made a large
number of readings, say 25 or more Provided that the only significant error is random,
the estimated mean may then be assumed to be derived from a normal distribution, such
that there is a 95% confidence that it lies within 2σ/n1/2 of its true value. Hence if

           (5)x x − xõ 2 / n

there is "a significant difference between the two values at the 95% level" (This means
that there is a 95% chance that the two values are genuinely different, rather than any
difference arising purely from random scatter about a common mean).

7   Straight line graphs

Plotting a 'best' straight line through a set of points is one of the commonest tasks in
data analysis. It is generally recognised that this line minimises the sum of the squared
deviations of the ordinates of the experimental points from the line. This is a useful
assumption, provided that the error in the abscissa is negligible compared to that in the
ordinate, which will often be the case. The line calculated by Least Squares Analysis will
only be the 'best' mathematically when the experimental errors are Gaussian in
distribution.

A least squares line should be fitted through data in which the dependent and
independent variables are thought to bear a linear relationship, even if you are not sure
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the experimental errors are Gaussian. However, this fit is only likely to be reliable when
you have more than three points (preferably at least six). If the uncertainty in both
variables is similar in magnitude, a full least squares procedure should be used (York,
Can. J. Phys., 44, 1079, 1966). 

For the common situation in which the x-coordinate is assumed free of error, the fit
can conveniently be accomplished by using a spreadsheet or calculator. We outline the
mathematics that underlie this method below.

A least squares analysis should not be
regarded as a substitute for drawing a
graph, since a least squares line can be
calculated for any set of points, even
four points lying almost in a square. A plot
of your experimental data will show
information that the least squares
calculation on its own will not reveal. For
example: perhaps your "straight" line is
actually curved. If it is, the curvature
might suggest some limitation in the
theory behind the experiment, or that
some systematic error exists in the
measurements. Does the scatter increase along the line? If so, are later results less
reliable? A least squares fit might give a good correlation coefficient, indicating a good
straight line, but would not tell you if scatter is constant - a graph is needed to show
this.

The choice of a 'best' straight line through a set of points (x1, y1), (x2, y2), ..... (xn, yn)
depends upon the relative proportional errors in the {xi} and {yi}. The simplest situation
occurs when the {xi} are precisely known, in which case the line is taken as

y = mx + c            (6)

with m and c chosen to minimise the sum of discrepancies between the measured values
yi and the predictions (m xi + c). In other words, m and c are determined by the equation

           (7)( F/ m) = ( F/ c) = 0

where F(m,c) is the sum of the squared discrepancies

           (8)F(m, x) = i=1
n (yi − mxi − c)2

One finds after some manipulation that the 'best' estimates of m and c may be
expressed as:
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            (9)m = S(x, y)/[S(x)]2

         (10)c = y − mx

where     (11)[S(x)]2 = 1
n (xi − x)2 = ( 1

n xi
2) − x2

     (12)[S(y)]2 = 1
n (yi − y)2 = ( 1

n yi
2) − y2

S(x, y) = 1
n (xi − x)(yi − y)

Turning to the estimate of error, the first step is to test the validity of the linear
assumption embodied in the equations above by calculating the correlation coefficient.
This is often quoted after a least squares analysis. It gives a value between -1 and +1
which shows how well the data approximate to a straight line (a value of 1 indicates a
perfect correlation, while a purely random scatter, with no correlation between x and y,
yields r=0). 

Although correlation coefficients are widely used in the social sciences, they are of only
limited value in the sort of fit you will perform, since for any reasonable set of chemical
data from an undergraduate experiment, the correlation coefficient will be >0.9 (and
often >0.99). It thus often provides little guidance in deciding whether or not the data
gathered during an (undergraduate) experiment are reliable.

         (13)r = S(x, y) /[S(x)S(y)]

8  Propagation of errors (combining errors)

Sometimes, the final result of an experiment is a quantity you have measured directly.
The error is then just the error in the measurement itself. More often, however,
intermediate results are combined in a number of mathematical steps to give a final
result. The question then arises: how should the errors in the individual measurements
be combined to yield an estimate of the error in the final result?

The most direct way to proceed would be to insert the measurements with their error
bounds into the formula which defines your result and work out an answer, which will
then have the correct error bound. However, this method is a bit tedious, and it is
useful to know how this can be done with a minimum of difficulty through calculus.

This section concerns the magnitude of error in a function f(x) of physical interest
implied by an estimated error in the measured variable x. More generally, errors in
several measured quantities x, y, z... might accumulate to give errors in the function f(x,
y, z, ...) of interest. In the single variable case

         (14)f =x f(x + x
2 ) − f(x − x

2 ) x

In other words, the required error is simply the change in f(x) between the highest and
lowest values of x in the range x ± δx/2. In cases where f(x) shows perceptible curvature
over the range, this is the most reliable procedure.
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Commonly, however, the error in x may be assumed to be sufficiently small that the
linear approximation

         (15)f(x) ∫ f(x) + f ∏(x)(x − x)

is valid over the range x ± δx/2. In this case, equation 14 goes over to

         (16)f =x f∏(x) x x

For example, the radioactive decay constant k is related to the half-life t of a
radioactive species by the equation

         (17)k = ln 2/t

from which the uncertainty in k arising from an uncertainty dt is given by

         (18)k =x dk
dt x t = (ln 2/t2)dt

subject to the requirement that 

         (19)x d2k
dt2 x t ^ ( dk

dt ) or 2( t/t) ^ 1

The generalisation of equation 16 to a function of several variables involves extending
equation 15 to the form

 (20)f(x, y, ...) = f(x, y, ....) + Øf
Øx (x − x) + Øf

Øy (y − y) + ...

Provided that the measured quantities x, y, ... are independent variables, the error in f
is given by 

        (21)( f)2 = ( Øf
Øx )2( x)2 + ( Øf

Øy )2( y)2 + ...

9   "Instrument error"

Frequently, you will not have enough repeat measurements to be able to reliably
calculate a standard deviation. For example, you might have performed a series of
titrations at different stages in an experiment, so that the same solution was never
analysed twice. In such a case, the error may be estimated by assessing the precision of
each reading.

A standard burette is calibrated at 0.1 cm3 intervals. By eye, a careful observer might
be able to estimate the volume in the burette to 0.01 cm3, thus the error in the volume
delivered would be 0.02 cm3 (0.01 cm3 at both the start and finish of the titration). In

_________________________________________________________________________________________________________
Background notes 1 - Error                                  - 9 -                                                                        21 July 2003



the absence of repeated measurements, this should be given as the error in the
measured volume.

10   Be Realistic when Assessing Errors

Despite what you read above about the error in titrant volume being about 0.02 cm3, you
must remember that the error is determined by you; it is not some number to be stuck
on your results because someone told you what it was. Not every student will have the
skill required to perform a titration to such precision. The error you quote must be an
honest reflection of how precise you think your own measurements are.

11   Significant Figures

The sun is 93,000,000 miles from the Earth. What does that mean? Does it, for
example, mean that the distance is 93,000,000 miles and not 92,999,999 or 93,000,001
miles? Obviously not. What is meant is that the (average) distance is closer to 93 million
miles than to 92 or 94 million miles. To make this clearer, we generally would write this
as 9.3 × 107 miles, showing only two significant figures.

Leading or trailing zeros may be confusing and are best eliminated by using 'scientific
notation'. If the number 2.1 were stated as 2.10 (i.e. to three significant figures), the 0
would be taken as conveying meaning - in other words, we were sure that the value was
closer to 2.10 than to 2.09 or 2.11.

12   Rounding

Suppose the average of a number of titrations is 25.02749 cm3. Calculation has yielded
this figure, but what should be quoted in a report? Values given at the end of a
calculation should be rounded so that only significant figures are shown. We have seen
earlier that the error in titration when carried out by a competent experimentalist
should be about 0.02 cm3, so that the average titrant volume should be rounded to two
decimal places and shown as 25.03 ± 0.02 cm3. If you have a sufficiently large number of
readings, you should calculate and quote the standard deviation for the data.

Do not quote significant figures beyond the figure at which the error is likely to occur.

13   Non-linear Fitting

On occasion, your data may lie along a curve, rather than a straight line. A least-squares
fit is still appropriate, though the mathematics required to fit a polynomial is somewhat
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more tricky. Most calculators will perform such a fit, but you should not use a larger
degree of polynomial than seems justified.

14   Presentation of Graphs

Whenever your results show trends, the information should be shown in the form of
tables and/or graphs. When plotting graphs, make note of - and use - the following
conventions:

The independent variable (the variable which causes the change plotted) is shown as
the abscissa (x-axis) and the dependent variable as the ordinate (y-axis).

Data points must be shown clearly. Do not merely use dots, which will be lost if the line
passes through them. Open points (dots with a small circle drawn round) are simple and
clear.

If more than one set of data is to appear on the same graph, use different symbols
for each set. In such cases show on the graph the relationship between the data and
the symbols used.

Draw the fitted line up to each data point, rather than through it, so that each point
remains clearly visible.

Estimates of the error in each point should, when larger than the symbol used for the
point, be indicated by error bars. An error bar is a small bar drawn through a point,
showing the extreme limits of the possible value for the point. For example, if an
experimental point is (4, 25.17 ± 0.1), a point should be plotted at (4, 25.17), and an
error bar drawn from (4, 25.07) to (4, 25.27). If a data point contains error in the
x-coordinate, error bars should be drawn in the direction of this axis also.

Axes must be labelled with their identity and units. The graph should carry a clear
legend, but not lengthy explanation.

Each division on your graph paper should represent some simple number of units, such
as 100s or 1 kg. Do not divide your graph paper into units of 13.9 furlongs or 11 grains
per cubit.

When drawing lines of maximum and minimum slope through your data points, every
data point should be no further away from the lines of maximum and minimum slope than
the furthest point is away from the 'best fit' line.

The uncertainty of the slope or intercept of a graph is judged by drawing extreme line
fits to the points. These lines are not lines of the greatest and smallest possible slope
which can be drawn through some selected pair of data points. Instead, maximum and
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minimum lines represent the outer limits for a best fit line - they should themselves be
reasonable fits to the data.

15   Units and Symbols

The International System of Units (SI) is used widely in science and should be used
throughout your own work. Numerical results in your reports (including graphs and
tables) should always clearly show the relevant units. The seven basic units are:

molmoleAmount of substance

cdcandelaLuminous intensity

KKelvinTemperature

AampereElectric current

ssecondTime

kgkilogramMass

mmetreLength

SymbolName of SI
unit

Physical quantity

It is possible to express all other quantities in terms of these units (see table below).

s-1HzHertzFrequency

kg m2 s-3 A-2 = V A-1WohmResistance

kg m2 s-3 A-1   = J A-1 s-1VVoltPotential difference

A sCCoulombElectric charge

N m-2PaPascalPressure

kg m2 s-3    = J s-1WWattPower

kg m s-2    = J m-1NNewtonForce

kg m2 s-2JJouleEnergy

DefinitionSymbolSI UnitPhysical quantity

Certain decimal fractions and multiples of SI units have special names (e.g. Angstrom =
10-10 m, litre = 10-3 m3). Though non-SI, use of these units is widespread. The unit
'atmosphere' has special status in thermodynamics and must be retained sometimes as a
unit of pressure. One atmosphere is defined as 1.01325 × 105 Pa and is most commonly
used as a standard pressure, rather than as a unit of pressure. You will also meet the
units 'Bar', which equals 105 Pa, and 'torr', which equals 1/760 atmosphere.

It is important to use the accepted symbols. The symbol for gram is g, not gm or gms. It
is never correct to add “s” to indicate the plural for a unit. Note also that lower case “k”
is used for rate constants (and, in some books, the Boltzmann constant), while upper
case “K” means equilibrium constant, or degrees Kelvin - you should make sure these are
clearly distinguished in your lab reports (and exam answers!)
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16  Labelling Graphs and Tables

Confusion often arises when data in a table are shown with a multiplicative power of ten
at the head of the table, e.g:

9.01318

6.92304

4.76291

106 rate / s-1T/K

Are the values in the 'Rate' column 4.76 × 10-6 s-1, or are they 4.76 × 106 s-1? The rule,
stated simply, is "the value in the table is equal to the heading." Thus 4.76 = 106

Rate/s-1, so Rate = 4.76 × 10-6 s-1. You should adhere to this convention in labelling all
graphs and tables.  Note the use of the solidus (/) in the heading. It should only be used
in this context, not shown as part of the units of a result. i.e., write 40 km s-1, not
40 km/s.

17   Checking Your Results

When you have assessed the errors in your experiment, drawn the graphs and
completed the calculations, three further tasks must be completed before you can
regard your treatment of the results to be finished:

Are all my results 'reasonable'?

Sometimes, results are quoted which are not just unlikely, but total nonsense (for
example, RMMs of 10-56 g mol-1, or molecular diameters of several metres.) Look at your
results to assess whether they are at least of the right order of magnitude. If they are
not, your calculations are probably in error. If you have no idea what magnitude they
should be, you have not properly prepared for the experiment.

Are the units of my results appropriate?

Can I explain any odd-looking results?

If your graph shows excessive scatter of points, there must be a reason. If your
results are far away from those expected, there must again be a reason. If you cannot
yourself discover the cause of any discrepancy, ask a demonstrator when signing off.
But remember: there will not always be someone else to ask, and the primary
responsibility for assessing the quality of your results - and explaining what went wrong
or right - is your own.
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18   Postscript

No amount of manipulation of data can rescue a poorly-performed experiment. To get
good results from an experiment, you must perform it with care.

Prepare completely before coming to the laboratory.

Read the entire script for an experiment before you enter the laboratory. Ensure you
fully understand what you must do. Try to understand the theory section, even if this
covers an area that has not yet been dealt with in lectures.

Plan the experiment in advance.

Do you have to allow instruments to warm up, or water baths to equilibrate? Can you
save time by carrying out two parts of the experiment simultaneously? A little advance
planning usually saves a lot of time later.

Check that you know what the experiment is designed to accomplish, and how you will
accomplish it.

Check that you understand all safety requirements of the experiment.

If in doubt about an operation, consult a demonstrator or technician.

Think about what you are doing.

Do not slavishly follow instructions; work out why an operation, such as turning a tap on
a vacuum line, is required. What will be the result of the operation?

Judge your results critically as the experiment proceeds.

Whenever possible, carry out the calculations required for your report as you do the
experiment. Plot your data as you work. Look critically at your results as they
accumulate: do they seem reasonable? Can you improve them as you understand more
about the experiment? If you do not assess your results while you work, you may be
unaware something is seriously wrong until you write your report - by which time it will
be too late to repair the damage.

Repeat measurements if they appear to be faulty.

All PTCL experiments can be completed well within the time allotted. You can thus
repeat sections of an experiment that seem not to have worked. You can do this on your
own initiative, but it may be productive also to discuss with a demonstrator the possible
cause of faulty results, and your proposed solution, before repeating a large chunk of
experimental work.
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