
      

6.04   Computer Simulation of Phases
by Molecular Dynamics  (6 points)

Relevant lecture course                                        

Molecular Interactions I. 

Introduction                                                    

In this experiment you will carry out a molecular dynamics simulation of a system of
noble gas atoms interacting through a pairwise LJ potential. The atoms are assigned
initial (face-centred cubic) crystal lattice starting positions and random initial
velocities such that the net momentum of the system is zero. The subsequent
trajectories of the atoms are then calculated step by step on the assumption that
they obey classical equations of motion subject to certain periodic boundary conditions
that are used to mimic the properties of an infinite system.

Each time step corresponds to an interval of the order of 10-14 s, and hundreds or
thousands of steps are followed, depending on the property under investigation. As the
simulation proceeds, running averages and totals are calculated, and from these are
obtained the values of various properties of the system such as its temperature,
pressure, energy, and the structure of the system in terms of its radial distribution
function. By repeating the calculation at various temperatures and densities, the
properties of all three (solid, liquid and vapour) phases of the system can be calculated
and compared with what one would expect theoretically (e.g. with the predictions of
kinetic theory in the case of a simulation of the gas).

Over the past several decades computer experiments have become an invaluable tool in
the study of physical properties, especially those of liquids. Such studies employ
computer programs to generate the positions and follow the trajectories of a small
number of atoms, calculate the effects of collisions between them, and monitor
various properties of the system such as the simulated temperature and pressure.
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An important part of the computer programs is the potential energy function, which
describes the energy of interaction between the atoms as a function of distance. An
obvious goal of computer simulation experiments would be to mimic the properties of a
real fluid by using an accurate potential energy function. In practice this is very
difficult, however, either because the true interactions are unknown or because they
are expressed by intractable equations. One therefore typically uses a simple model
for the interactions such as the Lennard-Jones (LJ) potential described below. This
has the advantage that, although the interactions in the simulated system are not
entirely realistic, they are both easy to calculate and unambiguously defined so that
precise, quasi-experimental data can be obtained for the model system. Theoretical
models of the system can therefore be tested and their properties compared with the
results of the simulation, and information may be obtained in this way on properties of
theoretical importance which cannot easily be measured in the laboratory.

Background Theory                                             

Interaction Potential

The Lennard-Jones (12-6) potential function provides a convenient approximation to
the interaction energy between two noble gas atoms:

(1)v (r) = 4 [( r )12 − ( r )6 ]

Here ε is the well depth of the potential and the collision diameter σ is the separation
at which v(r)=0. Another useful parameter is the equilibrium separation at which dv(r)/dr
is zero and there is no net force between the atoms. 

The negative r-6 term in equation (1) arises from attractive, long-range interactions
known as London or dispersion forces. These can be thought of as arising from an
instantaneous dipole moment in one atom inducing a dipole in the other atom, which can
cause an attractive force. When the atoms approach each other more closely, the
overlap of their closed-shell electron densities results in a strong repulsion. It is
convenient to express this repulsive interaction as a positive r-12 potential as in
equation (1), although an exponentially decaying potential would probably have more
theoretical justification.

Reduced Variables

For a system of identical noble gas atoms interacting through a pairwise  LJ potential,
it is natural to use the mass m of a single atom as the unit of mass, the well depth ε as
the unit of energy, and the collision diameter σ as the unit of length.  
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0.406229Xe
0.361190Kr
0.342124Ar
σ (nm)ε/kB (K)Atom

Table 1. Lennard-Jones parameters for Ar, Kr and Xe [1].

Given these definitions, the units of other quantities (pressure, time, momentum, etc.)
follow directly, and the properties of the system can be specified in terms of the
following reduced  variables:

energy timeE& = E / t& = ( / m 2 )
1
2 t

density  temperature& = 3 T& = kB T /
pressure diffusion coeff.  p& = p 3 / D& = ( m / 2 )

1
2 D

The use of somewhat different reduced variables is discussed in Atkins' Physical
Chemistry in connection with the principle of corresponding states, which asserts that
the equations of state are very similar for a wide range of real (non-polar) gases when
written in terms of the reduced variables pr = p/pc, Vm,r = Vm / Vm,c and Tr = T / Tc

(where pc, Vm,c and Tc are the critical pressure, critical molar volume and critical
temperature of the gas) [2].

In the present context, by analogy with the principle of corresponding states, the use
of reduced variables has the advantage that a single computer simulation at a fixed
reduced density ρ* and reduced temperature T* applies to a wide range of systems with
different values of ε, σ and m. For example, a LJ potential with ε/kB = 124 K and σ =
0.342 nm provides a reasonable approximation to the interaction between two argon
atoms, whereas a LJ potential with ε/kB = 190 K and σ = 0.361 nm is more appropriate
for the interaction between two krypton atoms (see Table 1). A single computer
simulation with ρ* = 1 and T* = 1 therefore corresponds both to a system of argon atoms
at T = 124 K and ρ = 25.0 atoms nm-3 and to a system of krypton atoms  at T = 190 K
and ρ = 21.3 atoms nm-3.

Phase Diagram

Figure 1 shows the phase diagram for a noble gas [3].  The left-hand side of the
diagram shows the projection in the ρ - T plane and the right-hand side shows the
projection in the p - T plane. The pressure, density and temperature at the critical
point are denoted pc, ρc and Tc, and the corresponding variables at the triple point are
pt,  ρt and Tt. 

The right-hand side of Figure 1 is the most frequently encountered form of the phase
diagram, involving the variables p and T. It shows the regions of pressure and
temperature at which various phases are thermodynamically stable; each point on the
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diagram corresponds to a realisable state of the system. The phase rule due to Gibbs
applies to this part of the diagram. Since the system only has one component (C = 1),
the number of degrees of freedom F and the number of phases in equilibrium P are
related in the right-hand side of Figure 1 by 

F  =  C + 2 - P  =  3 - P (2)
 

Coexistence curves between P = 2 phases therefore occur as lines in the figure, and
the triple point (where P = 3) is  the unique point where F = 0 and the system is said to
be invariant [2].

Fig. 1.  Phase diagram for a noble gas, showing the boundaries between solid (S), liquid (L) and vapour (G)
or fluid (F) phases as solid lines. The subscript t stands for triple point and c for critical point.

The left-hand side of Figure 1 will probably be less familiar to you. Two phases in
equilibrium have different densities and this makes the ρ - T phase diagram more
complicated. As in the right-hand side of the figure, there are again phase boundaries,
but in addition to distinct regions where different phases exist there are now also the
coexistence regions labelled S+F, S+L, L+G and S+G. These regions arise because (for
example) the point marked a on the gas-liquid coexistence curve in the p - T phase
diagram corresponds to two points in the ρ - T diagram along the same isotherm
between T = Tt and T = Tc, one at the low density of the gas phase and the other at
the higher density of the liquid phase. Similarly, the point marked b on the gas-solid
coexistence curve corresponds to two points in the ρ - T phase diagram, one at the low
density of the gas phase and the other at the considerably higher density of the solid
phase.

Now suppose that the system is prepared at a density ρ and temperature T inside the
L+G coexistence region in Figure 1. The point in question does not have the correct
density of either the gas or the liquid phase, and must therefore correspond to both
phases simultaneously. The nature of the correspondence is illustrated in Figure 2: a
certain fraction ( ρ - ρG ) / ( ρL - ρG ) of the system will be in the liquid phase at density
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ρL and the remaining fraction ( ρL - ρ ) / ( ρL - ρG)  will be in the gas phase at density ρG,
in accordance with the `lever' rule. A macroscopic system at a density ρ and
temperature T in the L+G coexistence region will therefore consist of different
proportions of the liquid and gas phases with a phase boundary between the two.

Fig. 2.  The lever rule. A macroscopic system prepared with a density ρ and temperature T in the L+G
coexistence region will  phase-separate into a fraction ( ρ - ρG ) / ( ρL - ρG ) of the liquid phase at density rL

and a fraction ( ρL - ρ ) / ( ρL - ρG ) of the gas phase at density ρG.

The reason for stressing this here is that this situation is almost impossible to mimic
in a computer simulation, where the inevitable restriction to a small finite number of
atoms (albeit with periodic boundary conditions) results in an unrealistically large free
energy penalty for forming the phase boundary. Thus a finite-sized computer
simulation will generally not form a phase boundary between the liquid and gas phases
in the coexistence region. Instead, it will spend some of its time exclusively in one
phase and the rest of its time in the other, and the statistical fluctuations in the
simulated properties of the system will consequently be very large [4]. 

In view of this situation, you should try to avoid the L+G and S+G coexistence regions
in this practical, and concentrate instead on reduced densities (ρ*) and temperatures
(T*) well inside the solid (S), liquid (L) and vapour (G) regions in Figure 1. In order to
help you to do this, it may be useful for you to know that the reduced density and the
reduced temperature at the triple point of a Lennard-Jones fluid are approximately ρ*

t

= 0.85 and T*
t = 0.70 and that the critical temperature is close to T*

c = 1.35. The liquid
phase can therefore be simulated by specifying ρ* = 0.85 and T* = 1.0, and the solid and
gas phases can be simulated at the same reduced temperature by specifying ρ* = 1.0
and ρ* = 0.1 respectively.
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Computational Details                                          

Periodic Boundary Conditions

A major limitation of any computer simulation is the number of atoms that can be
included. There are 6 × 1023 atoms in a mole, but a present-day computer would take
longer than the age of the universe (10 - 20 billion years) to calculate the forces
between this number of atoms. The size N of the sample that is studied in practice is
therefore typically less than 1000 atoms, and in the present experiment N is 108.

To minimise surface effects, and simulate more closely the properties of an infinite
system, periodic boundary conditions are imposed on the simulation. The 108 atoms
under investigation are chosen to lie in a central cell or “simulation box”. When an atom
leaves the box, the move is balanced  by a periodic copy of the atom entering the box
with the same velocity through the opposite face (Figure 3).  The only interactions
that are calculated are those between each atom within the box and the closest
periodic copy of each other atom, whether or not this copy lies within the box. This
procedure is known as minimum imaging, and it is the standard way to impose periodic
boundary conditions on a molecular dynamics simulation [4]. 

In this experiment we use a cubic simulation box, arranging the atoms initially in a
face-centred cubic lattice corresponding to the crystal structure of solid argon. Such
an arrangement requires N = 4n3 atoms, where n is an integer, and a 108-atom
calculation clearly satisfies this requirement with n = 3. 

Fig. 3.  A two-dimensional periodic system. Atoms
can enter and leave the central simulation square
across any of its four edges, but each time an atom
leaves the square the move is balanced by a periodic
image of it entering through the opposite edge. In a
three-dimensional simulation, atoms are free to cross
any of the six faces of the simulation cube in the
same way.

If you want to view the initial arrangement of the atoms, you can do so by performing
a simulation with an equilibration time of zero and a simulation time of zero, as
described in Section 5, and then typing the command ATM (for “atomic motion'”). The
effect of the periodic boundary conditions on the simulation can be seen by typing the
same command after a longer simulation of the gas phase and holding down the right
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bracket  key (]) to see a movie: provided the simulation has run for long enough the
tagged (red) atom will eventually leave the simulation box while a periodic copy of it
arrives through the opposite face.

Equilibration

The heart of any molecular dynamics simulation program is a computer subroutine that
follows a classical trajectory of the system by numerically integrating Hamilton's
equations of motion

(3) and (4)
dri
dt = + ØK

Øpi

dp i
dt = - ØV

Øri

where K and V are the total kinetic and potential energies

(5) and (6)K = i=1
N p i

2

2m V = i<j
N v( r i − r j |)

and ri(t) and pi(t) are the position and momentum vectors of each atom I = 1, 2, ..., N at
time t. (Equation (3) is simply the definition of momentum as pi = m dri/dt  and equation
(4) is Newton's second law in the form Fi = dpi/dt.)

Since the total energy E = K + V of the system is conserved by these equations, and N
and V are conserved by the periodic boundary conditions described above, each point
along the trajectory corresponds to a system with the same values of N, V, and E (i.e.,
to a system in a microcanonical ensemble [2]).  The instantaneous kinetic and potential
energies K and V are not conserved, however, and they fluctuate during the simulation
subject to the constraint that E = K + V. An important consequence of this is that the
instantaneous temperature T also fluctuates, since it is related to the kinetic energy  
K  by the equipartition formula 

(7)K = 3
2 N kBT

(or equivalently, in terms of the reduced variables defined in Section 2, by K * = ( ) N3
2

T *). The question that this clearly raises is how to allow for these temperature
fluctuations when performing a simulation at a specified reduced temperature T * in
the desired region of the ρ - T phase diagram.

The standard answer to this question is to begin the simulation with an equilibration
stage during which the instantaneous speeds of the atoms are scaled after each time
step so as to make the instantaneous reduced temperature T * equal to the specified
temperature T * [4]. If this procedure is carried out for sufficiently many time steps,
the kinetic and potential energies will equilibrate and the resulting atomic speed
distribution will approach a Maxwell-Boltzmann distribution at the specified
temperature. At this point one can proceed to the simulation stage of the calculation
in which the speeds are not scaled after each time step and the total energy E is
rigorously conserved: during this stage the instantaneous temperature T * will
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fluctuate around the specified temperature resulting in a time-averaged temperature
<T * > close to T *.

In the present experiment, you can specify both the equilibration time t*(equil) and
the simulation time t*(sim) as input parameters, and you should ensure in particular
that t*(equil) is large enough to give a well-equilibrated atomic speed distribution
before proceeding to the simulation stage of the calculation. Although the initial
velocity components of the atoms are chosen at random, the initial speed distribution
is chosen to be a delta function at the root-mean-square (rms) speed corresponding to
the specified temperature T * (i.e., the initial speeds of the atoms are all the same).
The first of the numerical experiments described below is a study of how rapidly this
initial speed distribution equilibrates into a Maxwell-Boltzmann distribution in each of
the simulated phases.

Simulated Properties                                           

The properties of the system that are calculated during the simulation stage of the
calculation include the instantaneous kinetic and potential energies K and V, the radial
(or “pair”) distribution function g(r), and the diffusion coefficient D. The last two of
these properties characterise the structure and the dynamics of the system
respectively, and their behaviour is especially interesting to study because it changes
so dramatically as a function of r and T.

Kinetic and Potential Energies

Although the instantaneous kinetic and potential energies K and V fluctuate during the
simulation, the fluctuations are typically fairly mild and the average values of these
energies contain valuable information about the simulated system. In particular, the
average value of the reduced potential energy provides an indication of the number of
“nearest neighbours” of each atom. Suppose, for example, that the system of N atoms
consists on average of N/2 isolated diatomics with a bond-length equal to the
Lennard-Jones equilibrium separation re. Then the total potential energy will be N/2
times the well depth -ε and hence the reduced potential energy per atom (V*/N) will be
- ½. The same argument also applies in other circumstances and shows that the
reduced potential energy per atom will always be approximately - ½  times the average
number of nearest neighbours of each atom, which is simply one in the case of N/2
isolated diatomics. 

In addition to this interpretation of the potential energy, the  calculated values of  K
and V provide a useful check on the internal consistency of the calculation:  their sum
E = K + V is expected to be conserved during the simulation stage of the calculation as
described in Section 3.2 and the average value of K is expected to be proportional to
the simulated temperature as in equation (7). Experiment 2 is based on these remarks.
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Radial Distribution Function

The radial distribution function g(r) is defined as the density of atoms in the volume
element dV=4πr2dr at a distance r from a given “test” atom, divided by the average
density ρ = N/V . Clearly, since the size of the volume element dV increases as r3, the
density within this volume element will approach the average density and hence g(r)
will tend to 1 in the limit as r tends to infinity.  Furthermore, since the short-range
repulsion between atoms precludes the possibility of finding any other atoms within
much less than one collision diameter of the test atom, g(r) will tend to 0 in the limit
as r tends to 0. 

The behaviour of g(r) between these two limits is more interesting. As discussed in
Atkins' Physical Chemistry and your Molecular Interactions lectures, g(r) can range
from a periodic array of sharp spikes in the case of a perfect crystal through to a
bland statistical curve of the form g(r) ≈ exp[-v(r)/kBT] for a low-density gas. In
Experiment 3, you will simulate the radial distribution function of the Lennard-Jones
system in all three (solid, liquid and vapour) phases and so see for yourself how g(r)
behaves between these two extremes.

Diffusion Coefficient

The calculated diffusion coefficient D in the gas phase can be compared with what one
would expect from kinetic theory, which gives the diffusion coefficient of a gas of
“hard sphere” atoms in terms of the mean free path λ and the mean speed  of thec
atoms as [2]

  (8) where   (9) and            (10)D = 1
3 c = 1

2 d2 c = 8kBT
m

1
2

Combining these three equations, and converting everything into the reduced variables
defined above, one finds that the reduced diffusion coefficient D* of the hard-sphere
gas is given by 

           (11)D& = 2(T&)
1
2

3
3
2 (d&)2 &

where d * = d/σ is the ratio of the hard-sphere and Lennard-Jones collision diameters.
Therefore, in so far as the Lennard-Jones potential can be approximated by a
hard-sphere potential, one would expect the calculated diffusion coefficient D* in the
gas phase to be proportional  to . The extent to which equation (11) is actuallyT& / &

satisfied by a Lennard-Jones gas is the subject of Experiment 4.
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Experimental Procedure                                        

The simulation program for this practical runs on the workstation jeroboam in the
computing area in the Upper Laboratory. Ask a demonstrator for the current
username and password for the experiment, then log on to jeroboam.

When you log on, a window in which you can type commands should be visible. If there
is none, click on the winterm icon to create one. In the window type cd md then press
the return key to change into the appropriate directory.

The following commands are available, all of which must be typed in capital letters:

RUN 
This command performs a new (statistically-independent) simulation, prompting you to
input the reduced density ρ*, the reduced temperature T *, the equilibration time
t*(equil) and the simulation time t*(sim) from the screen. As the simulation proceeds,
the number of time steps that have been completed will appear periodically on the
screen. Note that the time step used to integrate equations (3) and (4) is set
internally within the program to dt*=0.02, so that (for example) a simulation with
t*(equil) = 10.0 and  t*(sim) = 10.0 will require a total of 20/0.02 = 1000 time steps to
complete. Ideally one would like to use a larger time step to reduce the computer time,
but dt* = 0.02 turns out to be the largest time step that results in a stable numerical
integration.  If you find that the calculation is taking too long and you decide to abort
it, you can do so by typing the letter c (for cancel) while holding down the CTRL key.
Note also that the data saved from each new simulation overwrites the data from the
previous simulation in order to save on disc space, so you should ensure that you have
extracted all of the information you want from the previous simulation before typing a
new RUN command.

Once the simulation has finished, you can type any of the following commands to
analyse the results retrospectively,  as indicated on the computer screen:

ATM (“atomic motion”)
This command shows a movie of the latest simulation. When you type ATM, a new
window will appear on the screen showing a picture of the simulation box. The program
that generated this window will then read in the positions of the atoms after each of
the last 500 time steps of the simulation, which may take a couple of minutes. Once all
of the atomic positions have been read, you will see the prompt <start..> in the
bottom left-hand corner of the window: the right and left bracket keys (]) and ([) can
then be used to move the atoms forwards and backwards in time (respectively).
Notice that one of the 108 atoms is `tagged' in red to help you follow its motion, and
that several of the surrounding atoms are displayed in green: these green atoms are
those within 1.25 s of the red atom and are used to count `nearest neighbours' in
Experiment 2. When you have seen enough, you can type Q (shift q) to exit ATM and
return control to the terminal window.  
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ASD (“atomic speed distribution”) 
This command plots a graph of the atomic speed distribution averaged over the
equilibration period t*(equil) of the simulation. The Maxwell-Boltzmann distribution
corresponding to the input temperature T * is also shown (in red) for comparison. To
exit ASD click the left-hand mouse button on the “Exit” panel. 

VCD (“velocity component distribution”) 
This command works in exactly the same way as ASD, but shows a graph of the atomic
velocity component distribution rather than the atomic speed distribution. 

EKV (“E, K and V'”) 
This command shows the evolution of the total energy E, the kinetic energy K, and the
potential energy V during the equilibration and simulation stages of the calculation.
Note that all three energies are plotted per atom in terms of the reduced energy
variable E * defined in Section 2. 

RDF (“radial distribution function”) 
This command plots a graph showing the calculated radial distribution function  g(r*) as
a function of r*. The plot corresponds to a histogram average over the simulation
period t*(sim) of the calculation.  As in the case of the atomic speed distribution, the
radial distribution function can be printed if required by selecting “Print” from the
“File” menu. 

SUM (“summary”) 
This final command displays a summary of the simulation within the terminal window,
including the average values of the simulated reduced temperature <T * >, reduced
pressure <p*> and  reduced diffusion coefficient <D*>. 

Numerical “Experiments”                                      

Experiment 1: Equilibration

The first stage of every computer simulation is a series of convergence tests, and this
practical is no exception: the aim of this first experiment is to establish reliable
equilibration times t*(equil) for simulations of the solid, liquid and vapour phases. 

In order to do this, you can simply set the simulation time t*(sim) equal to zero and
perform calculations with increasing values of t*(equil) = 0, 10, 20, ... until the
calculated atomic speed and velocity component distributions are converged.
Appropriate reduced densities ρ* and temperatures T * to use for the three phases are
given at the end of Section 2, and the only commands you need are RUN, ASD and
VCD.  Once you have printed the data you need, close the graphics program xmgr
(which is automatically started by ASD and VCD) by clicking on the Exit command in
the File menu. Also check with ATM that the motion of the atoms does indeed
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correspond to what you would expect to see in each phase. Can you see the effect of
periodic boundary conditions in the liquid and gas phase simulations? 

Once you are satisfied that you have established reliable equilibration times for all
three phases, you should get a demonstrator to check your results before proceeding
to Experiment 2. Note that your final equilibration times may well be different in the
solid, liquid and vapour phases, and if they are you should think about why it is that the
system equilibrates more rapidly in one phase than  another. 

[To print your results: Data displayed using the xmgr graphing package can be printed
on the inkjet plotter by using the Printer Setup... command in the File menu. In the
Print Control String box enter lpr -Pps and then click on the Print button.]

Experiment 2: Energetics

The aim of this second experiment is to illustrate the behaviour of the instantaneous
kinetic and potential energies K and V discussed in Sections 3.2 and 4.1. 

In order to perform the experiment, simply repeat the (equilibrated) solid, liquid and
vapour phase calculations you performed in Experiment 1, but now set the simulation
time t*(sim) equal to t*(equil)  rather than to zero. After each simulation, type the
command EKV to see the evolution of K and V during the equilibration and simulation
phases, and plot out the results. Discuss these in your write-up, comparing in particular
the number of nearest neighbours implied by the average value of the potential energy
with a direct count of the average number of neighbouring (green) atoms within 1.25 σ
of the tagged (red) atom in 10 randomly selected frames of ATM.

Experiment 3: Structure

This third experiment investigates the structure of the system in each of the three
simulated phases in terms of the radial distribution function g(r). 

In order to perform the experiment, repeat the simulations you did in Experiment 2
and type RDF after each simulation, increasing the simulation time t*(sim) if necessary
to reduce the statistical fluctuations in g(r) and obtain a smoother curve. Also vary
the reduced temperature in the range 0.5 ≤ T * ≤ 1.5 in the solid (ρ* = 1.0) and vapour
(ρ* = 0.1) phases to see the effect of temperature on the simulated radial distribution
function. 

Plot your results on the printer and discuss them as fully as possible in your write-up in
light of the comments in Section 4.2 and the material in your Molecular Interactions
lecture notes.
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Experiment 4: Dynamics

This final experiment investigates the dynamics of the system in the gas phase in
terms of the simulated diffusion coefficient D*, and also provides an exercise in the
use of the principle of corresponding states. The reduced diffusion coefficient D* is
calculated during the simulation using the following simple formula involving the mean
square displacement   of the atoms from their initial positions [4]: < |r&(t&) - r&(0)|2 >

           (12)D& = lim
t&d∞

1
6t& < |r&(t&) - r&(0)|2 >

The limit as t* tends to infinity in this equation is approximated by the total simulation
time t*(sim), and several statistically-independent simulations are usually required to
obtain a reliable estimate of D* from Eq. (12).

In order to perform the experiment, simply use the commands RUN and SUM to
complete the following table of simulated diffusion coefficients at T* = 1.0, most of
which has already been filled in for you to save on computer time:

0.47  ± 0.030.46 0.48 0.46 0.52 0.4640400.25
(average)(5 separate runs)50500.2

0.99  ± 0.120.99 0.74 0.79 1.00 0.9067670.15
(average)(5 separate runs)1001000.1
2.81 ± 0.413.42 2.68 2.39  2.56 3.002002000.05

<D*>D*t*(sim)t*(equil)ρ*

Once you have completed the table, plot a graph of D* against  1/ρ* and explain
physically why you might expect this plot to deviate from linearity. Estimate the ratio
of the hard-sphere and Lennard-Jones collision diameters d * = d/σ, and comment on
the value you obtain. Hence use the information in Section 2.2 to estimate the physical
diffusion coefficients D of Ar and Kr at 1 atm pressure and 293 K. (If you are
interested in how realistic this calculation is you can compare your results with the
experimental viscosity coefficients ε  ≈  m ρ D of the two gases in Atkins' Physical
Chemistry, which are quoted there in micropoise (1 µ P = 10-7 kg m-1s-1). 
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